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1. INTRODUCTION AND PROBLEM STATEMENT

Consider the following problem: Given the system

xi = Ax + Buf(t)

x E lRn, uE R" , yE RP (1.1)

f(t) E 1R, f(t) = f(t + T), T # 0,

1 f f(t)dt = 0

find a state space controller K E Rlm× n such that with

u = Kx , (1.2)

the closed loop system

= (A + BKf(t))x (1.3)

has desired dynamic properties.

A characteristic feature of this problem is that the control, u, enters the open loop

dynamics as an amplitude of a periodic, zero average function, and this amplitude can be

chosen as a function of the state or, more generally, output. Systems of this form arise in

a number of practical applications. One of these is the Higher Harmonic Control (HHC)

in helicopters. Here a periodic feathering of rotor blades around a fixed pitch angle is

introduced in order to suppress the fuselage vibrations. The amplitude of the vibrations is

typically chosen as a function of the acceleration of pilot's seat (system output). Recent

experiments [1]-[3] have shown that HHC may lead to an order of magnitude reduction in

fuselage vibrations. However, no formalized methods for HHC controllers design have been

described in the literature.

Another example is the periodic operation of chemical reactors [4]. Here again the prob-

lc.. !q to choose the amplitude of input flow vibrations so that the closed loop system behaves

as desired.



From the theoretical standpoint, problem (1.1), (1.2) is closely related to the problem

of vibrational control [5]-[7] which can be formulated as follows: Given A E Wflfx" find a

periodic, zero average matrix B(t) E /R'  such that

x = (A + B(t))x (1.4)

is asymptotically stable. The only difference is that (1.4) does not contain structural con-

straints imposed by the feedback whereas (1.3) does. Nevertheless, due to the obvious

similarities between (1.3) and (1.4) (including the methods of their analysis-see below), the

problem (1.1), (1.2) will be referred to as closed loop vibrational control. The effect

of the structural contraints on the problem of vibrational stabilizability is the topic of this

note.

The results presented below differ also from those of [8] in that the latter uses the vi-

brations introduced in the parameters of dynamic output controllers whereas the plants are

time invariant.

All three cases however, i.e. [5]-[7], [8] and the present work, involve linear systems

with periodic coefficients. In order to simplify the analysis and obtain constructive results,

following [5]-[8], we assume that the periodic function f(t) is of high frequency as compared

with the dynamics of i = Ax. Formally, this means that function f has the asymptotic form

f(t) where 0 < c << 1, is sufficiently small. Thus, more precisely the problem addressed in

this note is as follows:

Given

i = Ax + Buf( ,

y = Cx, 1.5)

x E IR", u E IR, y E IR, f E IR,

f(-) periodic, zero average, 0 < c << 1 small parameter, determine under what conditions
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there exists a time invariant state space controller

u = Kx , (1.6)

or a time invariant output controller

u = Ki,

x = .4+ Buf + L(y- ), (1.7)

S= Ci,

such that the closed loop dynamics are asymptotically stable. The feedback laws (1.6),

(1.7) are restricted to be time invariant for reasons of practical implementation and possible

uncertainty in the knowledge of f(.). Problem (1.5), (1.6) is considered in Section 2 and

problem (1.5), (1.7) is discussed in Section 3. In addition, we characterize the pole placement

capabilities ensured by closed loop vibrational control and present the corresponding results

in Section 4. The conclusions are formulated in Section 5.

2. STATE SPACE FEEDBACK

Theorem 2.1: There exists fo > 0 such that for all 0 < c < co system (1.5) is

stabilizable by a state space feedback (1.6) if and only if (A, B) is stabilizable and the sum

of all the controllable eigenvalues of A is negative.

Proof: Necessity is proved by the following considerations. The state model in (1.5)

has the Kalman controllable form

[:] [a, 2]: I + [B']uf (2.1)

Since A,c is not affected by feedback, the stabilizability of (A, B) is r'-essry.

Consider the controllable part of (2.1):

.i, = Acxc + Buf() , ZE f, u E1. (2.2)

3



Introducing a state feedback u = Kx,, we obtain

.i = (A+ BKf ( x). (2.3)

Since (2.3) is periodic, there exists a Lyapunov transformation which reduces (2.3) to an

equation with constant coefficients,

= Az,

preserving the stability property. The following equality is true [5]:

I Tr [A + B1Kf dt = TrA

where T is the period of f(t/E). Thus

Tr A, = Tr A,

where Tr A, is equal to the sum of all the controllable eigenvalues. This completes the proof

of necessity.

The suffiency is proved as follows: Consider the Kalman controllable form (2.1) of the

system (1.5) where all the eigenvalues of A,, have negative real parts. Without loss of

generality, assume that (2.2) is in the controllable canonical form i.e.:

i,= Acx, + Bluf x ) , G IR', u E I~e J tm  uIR

where

A C 0 0 . . 1 , B , 0 '

--am -- ,~_ -a,. . I

and ai are the coefficients of the characteristic polynomial of matrix Ac. Apply state feedback

u = Kx= i XC = 0] (2.4)

where ki 1, i=2, ... , m. In the fast time r = t/f, the closed loop system is

dxc
= (fA + B, Kf(r)) x. (2.5)
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Let 4(t/c) be a fundamental matrix for (1/c)BKjf(t/c). Reducing (2.5) into the standard

form [9] and then applying the averaging principle we have the averaged system's equation

=C (Dx, (2.6)

where

0 1 ... 0
- 0 0.. I

-am k2km 2- -a,,-, k2k.-IT2  ... -a]

and

~(L) =j(7)dT.

Let A,...,Am denote the open loop eigenvalues of (2.2) and choose the closed-loop eigen-

values in the following manner:
T - _1 A + j Im Ai. (2.7)

m i=1

We determine the coefficients T; of the closed-loop characteristic equations corresponding to

A,..., Am. The state feedback gains (2.4) can be found by

S(aT- a,)
k2  =2,...,m . (2.8)

The control gains (2.8) guarantee the asymptotic stability of the averaged system (2.6).

As it follows [8], if (2.6) is asymptotically stable, there exists fo > 0 such that for all

0 < e < co equation (2.2) is also asymptotically stable. This proves the sufficiency. Q.E.D.

3. OUTPUT FEEDBACK

Theorem 3.1: There exists co such that for all 0 < e < co system (1.5) is stabilizable

by an output feedback (1.7) if (A, B, C) is controllable and observable and Tr A < 0. The

separation principle holds, i.e. the choice of K and L can be carried out independently.
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Proof: Consider system (1.5) with (A, B, C) controllable and observable, the ob-

server,

x = Ai + Buf G)+ L(y - i

and the feedback law
K1 .

u = Ki = -x.

In fast time r = t/e, the resulting closed-loop equations are:

d 7di = LC c(A- LC)+B~ (r B K, f(r) x (3-1

Let 4(t/e) be a fundamental matrix for (1/e)BKjf(t/1e). Define

o, V! (t At t

Reducing (3.1) into the standard form [9], and applying the averaging principle, we obtain

the following averaged equations:

A] +±TLC -LC 61 - A±+LC- TLC
X ( PLC tj- -LC I . (3.2)

To simplify (3.2), introduce the following transformation

[ [ 0[

which yields

where e is the innovations error. Thus, the separation principle holds: the eigenvalues of

the averaged closed-loop system are the union of those of 61 and those of A - LC. Using

construction similar to (2.6)-(2.8), one can compute the state feedback gain required to

stabilize ', and assign all the eigenvalues of A - LC through the choice of L so that the

stability of the closed-loop system is guaranteed. Q.E.D.
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4. POLE PLACEMENT CAPABILITIES

Consider again system (1.5) with feedback (1.6) and assume that

K 1  rk k 1

where ki ,I = 1,.-., n. Thus, the closed loop system is

2= (A±+B ±(!) (4.1)

Using the averaging theory [9], this equation can be reduced to the averaged equation,

x = (A + B)Y, (4.2)

and, as it follows from [9] and [10], (4.1) is asymptotically stable if (4.2) is asymptotically

stable. The stability properties of (4.2) can be checked using the following:

Theorem 4.1: Assume A and B are in the controller canonical form. Then there

exists fo such that for all 0 < E < CO,

0 -..- 0 0

B 0 . 0 0 (4.3)

and
a2 k2 ki- =

. 2s2

where a,, s = 1,2,..., are the Fourier coefficients of f(r), i.e.
00

f(r) = a ,sin(sr + ps)

Proof: Follows directly from Theorem 3 of [5]. Q.E.D.

It follows from Theorem 4.1 that the characteristic polynomials of A and (A + B) have

respectivcly, the form

po(s) s" + a1os- + a2 0s- + + ao (4.4)

p(s) = s" +as"-' + a2sn -2 +. +a,, , (4.5)
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where

a1 = a 0 , (4.6)

a2  _ a 20 , (4.7)

and aj, 3 < J < n can be arbitrarily assigned. Below we analyze to what extent the

constraints (4.6), (4.7) prevent the control designer from assigning the closed loop eigenvalues

in a desired region of the complex plane. More specifically, considering the closed region

D(a, p) of Figure 4.1, our purpose is to identify the conditions under which we can find n

complex numbers A1,...,A, , occurring as pairs of complex poles, such that they are the

roots of the polynomial (4.5) which satisfies (4.6), (4.7). When this is possible, we say that

pole assignment to the region D(a. o) using vibrational feedback is possible.

As preliminary results, we have the following

Lemma 4.1: The pole assignment in the region D(o, 0) using closed loop vibrational

control is possible, only if

- alo <_ no . (4.8)

Proof: If A,... , A, E D(a, ¢) are the .oots of the polynomial (4.5), then

n

- al Ai, (4.9)

and

Re(Aj) <_a.(4.10)

Equation (4.8) is obtained by equating the real parts in (4.9) and using (4.10). Q.E.D.

Lemma 4.2: Consider the optimization problem: Find vector r E R such that

P(r) = rirj (4.11)
,,8= 1

8<



is maximized subject to
rn

Er, = a. (4.12)
t=1

A global solution r" to this problem is given by

ar7 =r ... rm =- , (4.13)m

and

(M -1) 2(ar . (4.14)P~r) - 2m

Proof: Since the constraint (4.12) is ah'lways regular, we apply the Lagrarnge multiplier

rule. The Lagrangrian is

L(r, A)= rir + A (4.15)

*<3

The first order necessary conditions

L(r,A) _ (4.16)
0r

O9L(r, A)LA - 0, (4.17)

yield a linear system of equations whose solution is (4.13) together with:

A 1- r a. (4.18)

m

The second order conditions ensure that (4.13) is a strict maximum. Moreover, since un-

der the constraint (4.12) the cost function (4.11) is quadratic, this maximum is the global

maximum, and the proof is complete. Q.E.D.

We can now state the main result:

Theorem 4.2: The real pole assignmert in the region D(a, 0) i- possible using

vibrational feedback if and only if

-al 0 < no, (4.19)
Tn--i12

a 20 < n 1a. (4.20)
92n
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Proof: The necessity of (4.19) follows from Lemma 1.. The necessity of (4.20)

follows from the fact that when rl, . .. r, are the roots of (4.5), the coefficients a, and a2

are

na, = -Er, (4.21)

a-2 = E r,rj. (4.22)
*,j=1

The maximum value that (4.22) can achieve subject to the constraint (4.21), (4.6) ia given

by Lemma 4.2 and is exactly the right hand side of (4.20). Therefore .f (4.20) is violated.

pole assignment to the region D(a, 6) with real poles is not possible.

To prove the sufficiency of (4.19), (4.20), assume they both hold. Choose
al 0

r = r2=...= rn = (4.23)
n

It I. mmed.ately checked that these real numbers solve the problem of pole assignment to

the region D(o,, 0), which completes the proof. Q.E.D.

Theorem 4.2 gives a simple solution of the problem of pole assignment to the region

D(o', €) with real poles. When non real poles are allowed, more complicated results similar

to Theorem 4.2 can be derived, and will be included in a more enteiisive version of this

paper.

5. A CONCLUDING REMARK

As it follows irom the above and [51, the conditions of closed loop vibrational stabiliz-

ability are remarkably similar to the conditions of open loop vibrational stabilizability: the

only difference is thAt the former requires the stabilizability property of (A, B). Roughly

speaking, tne reason for this is that a controllable pair can always be transformed into the

controllable canonical form and this transformation removes the consiraint on the structure

of the input matrix B.
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